ChatGPT disruption: AI’s evolving vision renews need for trusted, governed data

This blog post was authored by Will Shuman - Director, Enterprise Data and Analytics on the technology insights blog.

Access to artificial intelligence (AI) and the drive for adoption by organisations is more prevalent now than it’s ever been, yet many companies are struggling with how to manage data and the overall process. As companies open this “pandora’s box” of new capabilities, they must be prepared to manage data inputs and outputs in secure ways or risk allowing their private data to be consumed in public AI models. Through this evolution, it is critical that companies consider that ChatGPT is a public model built to grow and expand off use through advanced learning models. Private instances will be leveraged shortly where the model for answering prompted questions will arise solely from internal data selected – as such, it’s important that companies determine where public use cases will be appropriate (e.g., non-sensitive information) versus what mandates the need for private instances (e.g., company financial information and other data sets that are either internal and/or confidential).

All in . . . but what about the data?

The popularity of recently released AI platforms such as Open AI’s ChatGPT and Google Bard has led to a mad rush for AI use cases. Organisations are envisioning a future in this space where AI platforms will be able to consume company-specific data in a closed environment vs. using a global ecosystem as is common today. AI relies upon large sets of data fed into it to help create output but is limited by the quality of data that is consumed by the model. This was on display during the initial test releases of Google Bard, where it provided a factually inaccurate answer on the James Webb Space Telescope based on reference data it ingested. Often, individuals will want to drive towards the end goal first (implementing automation of data practices) without going through the necessary steps to discover, ingest, transform, sanitise, label, annotate and join key data sets together. Without this important step, AI may produce inconsistent or inaccurate data that could put an organisation in a risky gambit of leveraging insights that are not vetted.

Through data governance practices, such as accurately labeled metadata and trusted parameters for ownership, definitions, calculations and use, organisations can ensure they are able to organise and maintain their data in a way that can be useable for AI initiatives. By understanding this challenge, many organisations are now focusing on how to appropriately curate their most useful data in a way that can be readily retrieved, interpreted, and utilised to support business operations.

Storing and retrieving governed data

Influential technology, like Natural Language Processing (NLP), allows for the retrieval of responses based on questions that are asked conversationally or a standard business request. This process parses a request into meaningful components and ensures that the right context is applied within a response. As technology evolves, this function will allow for a company’s specific lexicon to be accounted for and processed through an AI platform. One application of this may be related to defining company specific attributes for particular phrases (e.g., How a ‘customer’ may be defined for an organisation vs. the broader definition of a ‘customer’) to ensure that organisationally agreed nomenclature and meaning is applied through AI responses. For instance, an individual may be asked to ‘create a report that highlights the latest revenue by division for the past two years’ which applies all the necessary business metadata that an analyst and management would expect.

Historically, this request requires individuals to convert the ask into a query that can be pulled from a standard database. AI and NLP technology is now capable of processing both the request and the underlying results, enabling data to be interpreted and applied to business needs. However, the main challenge is that many organisations do not have their data in a manner or form that is capable of being stored, retrieved and utilised by AI – generally due to individuals taking non-standard approaches to obtaining data and making assumptions about how to use data sets.

Setting and defining key terms

A critical step for quality outputs is having data organised in a way that can be properly interpreted by an AI model. The first step in this process is to ensure the right technical and business metadata is in place. The following aspects of data should be recorded and available:

  • Term definition
  • Calculation criteria (as applicable)
  • Lineage of the underlying data sources (upstream/downstream)
  • Quality parameters
  • Uses/affinity mentions within the business
  • Ownership

The above criteria should be used as a starting point for how to enhance the fields and tables captured to enable proper business use and application. Accurate metadata is critical to ensure that private algorithms can be trained to emphasise the most important data sets with reliable and relevant information.

A metadata dictionary that has appropriate processes in place for updates to the data and verification practices will support the drive for consistent data usage and maintain a clean, usable data set for transformation initiatives.

Understanding the use case and application

Once the right information is recorded related to the foundation of the underlying data set, it is critical to understand how data is ultimately used and applied to a business need. Key considerations regarding the use case of data include documenting the sensitivity of information recorded (data classification), organising and applying a category associated with a logical data domain structure to data sets (data labeling), applying boundaries associated with how data is shared, and stored (data retention), and ultimately defining protocols for destroying data that is no longer essential or where requests for the removal of data have been presented and are legally required (data deletion).

An understanding of the correct use and application of underlying data sets can allow for proper decision-making regarding other ways data can be used and what areas an organisation may want to ensure they do not engage in based on strategic direction and legal and/or regulatory guidance. Furthermore, the storage and maintenance of business and technical metadata will allow AI platforms to customise the content and responses generated to ensure organisations receive both tailored question handling and relevant response parsing – this will ultimately allow for the utilisation of company-specific language processing capabilities.

Prepare now for what’s coming next

It is now more critical than ever that the right parameters are placed around how and where data should be stored to ensure the right data sets are being retrieved by human users while allowing for growth and enablement of AI use cases going forward. The concept of AI model training relies on clean data which can be enforced through governance of the underlying data set. This further escalates the demand for appropriate data governance to ensure that valuable data sets can be leveraged.

This shift has greatly accelerated the need for data governance – which by some may have been seen as a ‘nice to have’ or even as an afterthought into a ‘must have’ capability allowing organisations to remain competitive and be seen as truly transformative in how they use data, their most valuable asset, both internally for operations and with their customers in an advanced data landscape. AI is putting the age-old adage of ‘garbage in, garbage out’ onto steroids, allowing any data defects flowing into the model to potentially be a portion of the output and further highlighting the importance of tying up your data governance controls.

Why Protiviti?

Managing the amount of data being collected and utilised while protecting against potential vulnerabilities and data loss, takes strong data governance and management processes to help organisations continuously monitor the effectiveness of their data governance policies
and procedures. Protiviti’s subject matter experts work with our clients to customise a repeatable approach to data governance activities that will support each organisation’s goals. While we work first to make sure processes are independent of tools, we do have technology partnerships that can help optimise a data governance programme once fully defined while accelerating future growth and business value.

To learn more about our data governance solutionscontact us.


Ghislaine is a managing director and leader in technology consulting and business performance improvement. She has over 20 years of applied experience across strategy, transformation, and delivery, guiding CIOs, CFOs, CDOs and CISOs in transformational initiatives that ...
Rupesh Mahto
Rupesh is a senior director specialising in strategy, technology assessment and enabled execution, digital transformation, cloud migration, and application of emerging technology to business demands. He successfully leads interactions with CXO, focusing on increasing ...
Shane Silva
Shane is an accomplished managing director based in Sydney, leading the data governance and technology assurance practices. With a career spanning more than 16 years in the professional services industry, Shane is recognised for his exceptional expertise and proficiency ...
Leslie Howatt
Leslie is a managing director, and Protiviti’s technology consulting solution and diversity, equity, and inclusion lead. She specialises in digital and technology strategy as well as transformational change with over 25 years’ experience across consulting, industry, and ...